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Finding the Higgs, New Physics, Black Holes, ?

Large Hadron Collider (LHC)
proton - proton collider
Ecm ∼ 14 TeV
increased luminosity
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proton-proton collisions

strong interaction dynamics complicates computation
asymptotic freedom allows for perturbative calculation of parton-
parton collisions.
look at parton-parton subprocesses, and turn into cross-sections
using parton distribution functions

 p

 p

W, Z, !

W, Z, !

A Manohar (UCSD) Electroweak Corrections 4 / 50



Parton Processes

Typical LHC processes being studied such as jet production, t-quark
pair production, squark pair production proceed via energetic partonic
processes

qq → qq, qq̄ → qq̄, qq̄ → t t̄ , qq̄ → q̃q̃∗

with Q ∼
√

s of order (few) TeV.

Final state invariant masses are much smaller than Q.

Describe these using SCET. Work in the regime

s ∼ −t ∼ −u ∼ Q2

(Hard Scattering)
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Radiation

k

p

The intermediate propagator is

1
(p + k)2 =

1
2p · k

=
1

Eω(1− cos θ)

Singularities as:

ω → 0 (soft singularity) and θ → 0 (collinear singularity).
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QED
Collinear singularity regulated by fermion mass→ log Q2/m2.

Soft singularity: need to put a detector resolution: log Q2/∆2.

Exclusive processes have log2 Q2/m2 at large Q.

QCD
In QCD: look at inclusive processes. Add up processes with collinear
or soft radiation into IR safe observables. Then one does not get the
double logarithms.

The total cross-section e+e− → hadrons

R = 1 +
αs(Q)

π
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Sudakov Double Logarithms

There are no electroweak singlet targets or beams, so all processes
behave like the exclusive case and have double logs.
M. Ciafaloni, P. Ciafaloni and D. Comelli, PRL 84 (2000) 4810

Typical form of the radiative corrections:

α

4π sin2 θW
log2 s

M2
W ,Z
∼ 0.15

for
√

s ∼ 4 TeV.

Can be much larger. Need to be combined with the QCD radiative
corrections, which are 5 times larger.
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Size of Corrections

These corrections are large, and must be resummed. The purely
electroweak (i.e. not including QCD) corrections can be 40% at LHC
energies.

The QCD corrections are enormous (factors of 50) and must be
included at least to NLL order. [This is known]

Strongly energy dependent.
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M. Ciafaloni, P. Ciafaloni and D. Comelli

V. S. Fadin, L. N. Lipatov, A. D. Martin and M. Melles
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M. Beccaria, F. M. Renard and C. Verzegnassi

A. Denner and S. Pozzorini

M. Hori, H. Kawamura and J. Kodaira

W. Beenakker and A. Werthenbach

This talk based on

J. Chiu, F. Golf, R. Kelley, A.M, PRL 100 (2008) 021802

J. Chiu, F. Golf, R. Kelley, A.M, PRD 77 (2008) 053004

J. Chiu, R. Kelley, A.M, arXiv:0806.1240
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Sudakov Form Factor
(Q2 ≡ −q2 = −(p2 − p1)2) ,

FE (Q)

[
ū(p2)γµu(p1)

]
= 〈p2| JµEM(q) |p1〉 =

 q

 p1

 p2

If coupling strength is small we calculate FE (Q2) perturbatively in
powers of α = e2

4π .

= + + · · ·
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FE (Q) for Q2 � m2
e ∼ 0 is called the Sudakov Form Factor

We will work with the on-shell form factor, i.e. an S-matrix element
for scattering.
The off-shell form-factor with p2

i 6= m2
i is also considered in the

literature. There is a factor of 2 in the double-logarithm between
the two cases.
pair production: analytically continue Q2 → −q2 − i0+,

log
Q2

µ2 → log
q2

µ2 − iπ

In QED, look at log Q2/m2
e terms. Here we study log Q2/M2

W ,Z
corrections.
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IREE (InfraRed Evolution Equation) inspired approach — a
well-motivated guess as to the structure of the corrections.

Previous computations done with all gauge bosons having a common
mass M. Conceptual problems with symmetry breaking and
SU(2)× U(1) mixing which lead to MW 6= MZ .

log
Q2

M2 → log
Q2

M2
W

+ log
Q2

M2
Z

+ log
Q2

M2
γ

but Mγ = 0

Can address the issues using effective field theory methods.

Agrees with previous fixed order computations to 2 loops by Jantzen,
Kühn, Penin and Smirnov

Can include mt — multiscale problem with mt and M.
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General perturbative structure of FE(Q)

L = log Q2/M2

(Each term has a coefficient)

FE (Q) =

[
1 + α1

(
L2 + L1 + L0

)
LO + NLO

+ α2
(

L4 + L3 + L2 + L1 + L0
)

N2LO

+ α3
(

L6 + L5 + L4 + L3 + L2 + L1 + L0
)]

N3LO

+ α4
(

L8 + L7 + L6 + L5 + · · ·+ L0
)]

N4LO

The αn term has powers of L up to L2n.
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Structure of series

The αL2, α2L4, α3L6 series is called LLFO.

The αL, α2L3, α3L5 series is called NLLFO.

The series for log FE (Q2) takes a simpler form

log FE = α
(

L2 + L + L0
)

+α2
(

L3 + L2 + L + L0
)

+α3
(

L4 + . . .+ L0
)

+ . . .

with the αn term having power of L upto Ln+1.

log FE = L f0(αL) + f1(αL) + α f2(αL) + . . .
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Counting of Logs

Only get Ln+1 at order αn, so there are far fewer terms.

log FE = L f0(L) + f1(αL) + α f2(αL) + . . .

RGE counting: f0 is LL, f1 is NLL, etc.

If we then expand to get FE and look (for example) at order α2:

α2L4 is LL (LLFO),

α2L3 is NLL (NLLFO),

α2L2 is NNLL (NNLLFO),

α2L is NNLL (N3LLFO)

mismatch in number of N’s increases at higher orders in α.
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Infrared Evolution Equation
Collins

log FE (Q2) = log F0(α(M))

+

∫ Q2

M2

dµ2

µ2

[
ζ(α(µ)) + ξ(α(M)) +

∫ µ2

M2

dµ′ 2

µ′ 2
Γ(α(µ′))

]

ξ integral can be done.
F0, ζ, ξ and Γ have the expansions

F0(α) = 1 + F (1)
0 α + F (2)

0 α2 + . . .

Γ(α) = Γ(1)α + Γ(2)α2 + . . .

ζ(α) = ζ(1)α + ζ(2)α2 + . . .

ξ(α) = ξ(1)α + ξ(2)α2 + . . . .
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SCET Form

log FE (Q2) = C(a(Q)) + D0(a(M)) + D1(a(M)) log
Q2

M2

+

∫ M

Q

dµ
µ

[
A(a(µ)) log

µ2

Q2 + B(a(µ))

]

C: matching at Q

A logµ2/Q2 + B: SCET anomalous dimension

D0 + D1 log Q2/M2: matching at M

There is a log Q in the matching at M
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Mapping between SCET and IREE

1
2

A(a) = Γ(a)

D1(a) = ξ(a)

−1
2

B(a) +
1
2
∂C(a)

∂a
βa(a) = ζ(a)

C(a) + D0(a) = log F0(a).

The log in the low scale matching, D1, is ξ.
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Resummation

A =



1

αL2 αL α

α2L4 α2L3 α2L2 α2L α2

α3L6 . . .

...


In the leading-log regime L ∼ 1/α, the various terms are of order

A =



1
1
α 1 α

1
α2

1
α 1 α α2

1
α3 . . .
...


.
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Resummation: Exponentiated Form
Exponentiated form:

log A =



αL2 αL α

α2L3 α2L2 α2L α2

α3L4 α3L3 α3L2 α3L α3

α4L5 . . .

...


In the leading-log regime:

log A =



1
α 1 α

1
α 1 α α2

1
α 1 α α2 α3

1
α . . .
...


.
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Resummation: Exponentiated Form

log A =
1
α

f0 + f1 + αf2 + . . .

=
1
α

[
f0 + αf1 + α2f2 + . . .

]
so that f1 and f2 are corrections to log A. However,

A = exp
[

1
α

f0 + f1 + αf2 + . . .

]
= e

1
α

f0 × ef1 × eαf2 × . . .

Must include the LL and NLL series. QCD is in this regime, and the
corrections are a factor of 50.

Electroweak corrections are in the leading-log-squared regime, with
αL2 ∼ 1.
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Resummation: Electroweak

A =



1

1 α1/2 α

1 α1/2 α α3/2 α2

1 . . .

...


and in exponentiated form

log A =



1 α1/2 α

α1/2 α α3/2 α2

α α3/2 α2 α5/2 α3

α2 . . .

...


.
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Big difference from the QCD case. All the large terms can be included
by using a one-loop RG improved computation.

So can include all effects by doing a two-loop QCD plus one-loop EW
renormalization group improved computation.

Included MW 6= MZ , γ − Z mixing, mt effects, and Higgs radiative
corrections. Numerically, the results we have obtained have errors
below 1%.
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SCET

Describes energetic particles with small invariant mass.

Define p+ = E − pz , p− = E + pz . The the power counting is

p− ∼ Q p+ ∼ Qλ2 p⊥ ∼ Qλ ⇒ p2 ∼ Q2λ2

for particles moving along the z-direction. n-collinear

For particles moving in the −z-direction, swap p+ ↔ p−. n̄-collinear

Have n-collinear, n̄-collinear, and ultrasoft gluons.
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SCET degrees of freedom (modes)

Light Cone Coordinates:
Hard Modes: p2 ∼ Q2

integrated out
Collinear modes: p2 ∼ M2

Ultra-Soft modes: p2 ∼ M4/Q2

do not contribute

p+

p-

Q

Q

Ultra-Soft

Hardn coll

n-bar coll

Q2

M2
M /Q2

M /Q2
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Outline of Calculation
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Outline of Calculation

1 match at Q onto SCET with gauge bosons

〈p2| Ôfull |p1〉 = exp[C(Q)] 〈p2| ÔSCET |p1〉

2 run from Q → M:

exp[C(M)] = exp[C(Q)] exp
[∫ M

Q

dµ
µ
γSCET (µ)

]
3 match at M onto SCET without gauge bosons

〈p2| ÔSCET |p1〉 = exp[D(M)] 〈p2| ÔSCET w/o W ′s |p1〉

D(M) = D0(α(M)) + D1(α(M)) log
Q2

M2

A Manohar (UCSD) Electroweak Corrections 28 / 50



High scale matching: µ ∼ Q

full theory:

p1

p2

(a)

EFT:

p1

p2

(a)

p1

p2

(b)

p1

p2

(c)
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Same as for DIS, since small scales such as M can be neglected.
Matching at Q:

LQ = log
Q2

µ2

c(µ) = exp C(µ)

C(µ) = a(µ) CF

(
−L2

Q + 3LQ +
π2

6
− 8
)

No large logs if µ is of order Q, e.g. if µ = ηQ, then

LQ = log
1
η2
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p1

p2

(a)

p1

p2

(b)

p1

p2

(c)

Compute running between Q and M using SCET anomalous
dimension.
From UV divergences, so independent of IR scales such as M,
same as DIS

µ
dc(µ)

dµ
= γ(µ)c(µ)

γ(µ) = a(µ) CF [4LQ − 6]
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log c(M)− log c(Q) =

∫ M

Q

dµ
µ
γ(µ)

An additive shift in C(µ), i.e. in log FE .

The last step is to integrate out the massive gauge bosons at µ = M.
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Low scale matching: µ ∼ M

EFT (SCET with gauge bosons):

p1

p2

(a)

p1

p2

(b)

p1

p2

(c)

EFT (SCET without gauge bosons):

NONE
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Finite part gives the matching correction:

exp D = a CF

[
2LMLQ − L2

M − 4LM +
9
2
− 5π2

6

]

There is a log Q2/M2 term in the matching at µ ∼ M.

Take µ = M, then LM = 0 and the log Q term vanishes. But this is a
fake. If µ = ηM, then

LQLM →
(

log
Q2

M2 + log
1
η2

)
log

1
η2
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Single log in low scale matching

There is a single log in the matching.

At two-loop order, it does not vanish even if µ = M.

It cannot be moved to the anomalous dimension, because it depends
on particle masses. There is a piece of the form

Cl2(π/3), Cl2(x) =
∞∑
1

sin nx
n2

for massive particles at two loops, which is absent for massless
particles.
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Log summation by RGE
Normal RGE:

αn
(

Ln,Ln−1, . . .L2,L
)

summed using RGE equations — n terms at order αn.

Sudakov (SCET) RGE — wanted to sum:

αn
(

L2n,L2n−1, . . .L2,L
)

but can only sum
αn
(

L2n,L2n−1, . . .L2, /L
)

which sums 2n − 1 terms instead of 2n. Not so bad.

Agrees with the known results. Can reproduce the known two-loop
fixed order computations using a one-loop computation plus RGE:
α2 × L4,L3,L2.
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It is now simple to compute other results, which have not been done:

Other operators, e.g. ψ̄ψ, φ†φ, φ†ψ etc. (SCET for scalars)

Can include mass effects — two fermions have masses m1 and m2,
and sum logs of mi .

Can include Higgs fields and Yukawa couplings, and compute for the
standard model, including the top-quark Yukawa coupling.

Do the case MH , MW , and MZ all different, and treat electroweak
mixing.
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7

O C(µ)/CF γEF T (µ)/CF D(µ)/CF

ψ̄ψ −L
2
Q + π2

6 − 2 4LQ − 6 −L
2
M + 2LMLQ − 3LM + 9

2 − 5π2

6

ψ̄γµψ −L
2
Q + 3LQ + π2

6 − 8 4LQ − 6 −L
2
M + 2LMLQ − 3LM + 9

2 − 5π2

6

ψ̄σµνψ −L
2
Q + 4LQ + π2

6 − 8 4LQ − 6 −L
2
M + 2LMLQ − 3LM + 9

2 − 5π2

6

φ†φ −L
2
Q + LQ + π2

6 − 2 4LQ − 8 −L
2
M + 2LMLQ − 4LM + 7

2 − 5π2

6

i(φ†Dµφ − Dµφ†φ) −L
2
Q + 4LQ + π2

6 − 8 4LQ − 8 −L
2
M + 2LMLQ − 4LM + 7

2 − 5π2

6

ψ̄φ −L
2
Q + 2LQ + π2

6 − 4 4LQ − 7 −L
2
M + 2LMLQ − 7

2LM + 4 − 5π2

6

TABLE I:
tab:results
One-loop corrections to the Sudakov form-factor. γF is the full theory anomalous dimension, C is the matching

coefficient at µ = Q, γ is the SCET anomalous dimension, and D is the matching coefficient at µ = M . γ(1)
F , C(1), γ(1) and

D(1) are the coefficients of a ≡ α/(4π) in the one-loop corrections, and LQ ≡ log Q2/µ2, LM ≡ log M2/µ2.

p1

p2

(a)

p1

p2

(b)

p1

p2

(c)

FIG. 2:
fig:scet
SCET graphs for the matrix element of Õ. The dot-

ted lines are SCET propagators, and represent either fermions
or scalars. For iφ†↔Dµφ, graph (a) also has a contribution
where the gauge boson field at ⊗ arises from the covari-
ant derivative. The upper graphs are the n-collinear and n̄-
collinear graphs, and the lower graph is the ultrasoft graph.
There are also wavefunction graphs.

bin subtraction, see Ref [18]). As noted earlier, anoma-
lous dimensions in SCET can depend on Q. Ultraviolet
divergences do not depend on the infrared properties of
the theory, such as a gauge boson mass, so the anoma-
lous dimension for O = ψ̄γµψ is identical to the DIS
result [19]. The same argument as that given in Ref. [19]
for deep inelastic scattering shows that γ(µ) is linear in
log µ2/Q2 to all orders, so γ is written as

γ(µ) = A(α(µ)) log
µ2

Q2
+ B(α(µ)) (29) {20}

which defines A and B. The anomalous dimension has
the expansion γ = γ(1)a + γ(2)a2 + . . ., A = A(1)a +
A(2)a2 + . . ., B = B(1)a+B(2)a2 + . . . The computations
for the other cases are similar, and the results are given
in Table I. Note that the anomalous dimension depends

only on the external fields for the operators, and is equal
for the three fermion operators, and for the two scalar
operators. The reason is that the EFT anomalous di-
mension depends on the IR divergence of the full theory
graph, and the IR divergence is independent of the vertex
factors. The anomalous dimension for ψ̄φ is the average
of the anomalous dimensions for the fermionic and scalar
operators.

The next step in the EFT computation is the matching
condition at the low scale µ = M . At this scale, the
massive gauge boson is integrated out, and one matches
to an effective theory which is SCET without the massive
gauge boson. In our toy example, this effective theory
contains no gauge particles, and is a free theory. The
matching at µ = M is given by evaluating the graphs
in Fig. 2, and the wavefunction graphs, this time the
gauge boson mass is not set to zero and the one loop
EFT graphs are non-zero. This computation is discussed
in detail here for the fermion vector current. The other
cases are treated similarly.

One matches the operator c(µ)[ξ̄n,p2
Wn]γµ[W †

n̄ξn̄,p1
]

in SCET with gauge particles (the theory above M)
onto the operator [expD(µ)] c(µ)ξ̄n,p2

γµξn̄,p1
in SCET

without gauge particles (the theory below M). The n-
collinear graph in Fig. 2 gives

In = −ig2µ2εCF c(µ)

∫
ddk

(2π)d

1

k2 − M2

×
/̄n

2
nα /n

2

n̄ · (p2 − k)

(p2 − k)2
γµ 1

−n̄ · k
n̄α

= −2ig2CF γµµ2ε

∫
ddk

(2π)d

×
n̄ · (p2 − k)

[(p2 − k)2 + i0+][−n̄ · k + i0+][k2 − M2 + i0+]
.

(30) {21}

This integral is divergent, even in 4−2ε dimensions with
an off-shellness, unlike the previously studied examples
where the gauge boson was massless [19]. A related diver- cite?

Note there is a factorization structure in the EFT

All ψ̄ψ are equal, all φ†φ are equal, ψ̄φ is the average in the EFT.
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Factorization Structure

For massive fermions also have a factorization form:

Γ12(Q2,1,2) = Γ12(2p1 · p2) + f1(m1) + f2(m2)

where Γ(Q) is independent of particle type, and fi only depends on the
properties of particle i (including whether it is a scalar or fermion).

Γ12(2p1 · p2) = a log(2p1 · p2) + b

Factorization up to a calculable single log term.
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top quark with Higgs corrections:

mt −mb is large, and breaks SU(2)× U(1) symmetry. If one uses a
sequence of theories with MH > mt > MZ > MW , then a mess.

But instead, can integrate them all out at a common µ.

Go from SU(3)× SU(2)× U(1) directly to SU(3)× U(1), and a theory
with SCET Q(t), tR and bR fields to one with SCET bL, bR fields and
HQET tL, tR fields.

Then compute observables as before. For cross-sections, the SCET
field matrix elements in the proton are the Collins-Soper parton
distribution functions. For final states, construct jet observables, or
t-observables, etc.
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Rates for uū → µ+µ− (dotted black), uū → uū (solid cyan), uū → cc̄
(dashed red), uū → t t̄ (solid blue), uū → dd̄ (dot-dashed green) and
uū → bb̄ (dashed magenta) as a function of

√
ŝ in GeV at θ = 90◦,

normalized to their tree-level values without any radiative corrections.
Note the logarithmic scale.
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Electroweak corrections to uū → µ+µ− (dotted black), uū → uū (solid
cyan), uū → cc̄ (dashed red), uū → t t̄ (solid blue), uū → dd̄
(dot-dashed green) and uū → bb̄ (dashed magenta) as a function of√

ŝ in GeV at θ = 90◦. The large corrections for uū → dd̄ arise from
the t-channel W exchange graph.
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Rates for uū → µ+µ− (dotted black), uū → uū (solid cyan), uū → cc̄
(dashed red), uū → t t̄ (solid blue), uū → dd̄ (dot-dashed green) and
uū → bb̄ (dashed magenta)as a function of −t̂/ŝ for

√
ŝ = 1 TeV,

normalized to their tree-level values without any electroweak
corrections.

A Manohar (UCSD) Electroweak Corrections 43 / 50



Electroweak corrections to uū → µ+µ− (dotted black), uū → uū (solid
cyan), uū → cc̄ (dashed red), uū → t t̄ (solid blue), uū → dd̄
(dot-dashed green) and uū → bb̄ (dashed magenta) as a function of
−t̂/ŝ for

√
ŝ = 1 TeV. The large corrections for uū → dd̄ arise from the

t-channel W exchange graph.
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The ratio (uū → t t̄)/(uū → cc̄) at t̂ = −0.2ŝ, (dotted blue), t̂ = −0.35ŝ
(dashed red), t̂ = −0.5ŝ (solid black), t̂ = −0.65ŝ (long-dashed
magenta) and t̂ = −0.8ŝ (dot-dashed cyan) as a function of

√
ŝ in GeV.

A Manohar (UCSD) Electroweak Corrections 45 / 50



Electroweak corrections to uū → µ+µ− at t̂ = −0.2ŝ, (dotted blue),
t̂ = −0.35ŝ (dashed red), t̂ = −0.5ŝ (solid black), t̂ = −0.65ŝ
(long-dashed magenta) and t̂ = −0.8ŝ (dot-dashed cyan) as a function
of
√

ŝ in GeV.
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Electroweak corrections to uū → µ+µ− at
√

ŝ = 1 TeV, (dotted blue),√
ŝ = 2.5 TeV (dashed red) and

√
ŝ = 5 TeV (solid black) as a function

of −t̂/ŝ.
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Electroweak corrections to uu → uu (dotted black), ud → ud (dashed
red), dd → dd (solid blue) and ud̄ → ud̄ ,dū → dū (dot-dashed green)
as a function of

√
ŝ in GeV at θ = 90◦.
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Electroweak corrections to uu → uu (dotted black), ud → ud (dashed
red), dd → dd (solid blue) and ud̄ → ud̄ ,dū → dū (dot-dashed green)
as a function as a function of −t̂/ŝ at

√
ŝ = 1 TeV.
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Conclusions

Include electroweak corrections in a systematic way.
Include dependence on MW , MZ and mt in a spontaneously
broken gauge theory including gauge mixing.
Include Higgs corrections due to mt .
Can be extended to other electroweak processes such as squark
production
Purely electroweak corrections are important for LHC
cross-sections.
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